A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI
نویسندگان
چکیده
Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system) with 32 participants. Although the highest information transfer rates (ITRs) were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively). In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control), and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques.
منابع مشابه
Development of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals
BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...
متن کاملDevelopment of a hybrid mental spelling system combining SSVEP-based brain-computer interface and webcam-based eye tracking
The goal of this study was to develop a hybrid mental speller that can effectively prevent unexpected typing errors in the steady-state visual evoked potential (SSVEP)-based mental speller by simultaneously using the information of eye-gaze direction detected by a low-cost webcam without calibration. In the implemented hybrid mental speller, a character corresponding to the strongest SSVEP resp...
متن کاملA Comparison of Two Spelling Brain-Computer Interfaces Based on Visual P3 and SSVEP in Locked-In Syndrome
OBJECTIVES We study the applicability of a visual P3-based and a Steady State Visually Evoked Potentials (SSVEP)-based Brain-Computer Interfaces (BCIs) for mental text spelling on a cohort of patients with incomplete Locked-In Syndrome (LIS). METHODS Seven patients performed repeated sessions with each BCI. We assessed BCI performance, mental workload and overall satisfaction for both systems...
متن کاملAutonomous Parameter Adjustment for SSVEP-Based BCIs with a Novel BCI Wizard
Brain-Computer Interfaces (BCIs) transfer human brain activities into computer commands and enable a communication channel without requiring movement. Among other BCI approaches, steady-state visual evoked potential (SSVEP)-based BCIs have the potential to become accurate, assistive technologies for persons with severe disabilities. Those systems require customization of different kinds of para...
متن کاملComparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP
There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems. This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems. The techniques are based on Power Spectrum Density Analysis (PSDA), Fast Fourier Transform (FFT), Hilbert- Huang Transform (H...
متن کامل